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Induced energy polarization of the vacuum and the rotational curve
for the Galaxy
A. Raymond Penner

Abstract: The theory of an induced energy polarized vacuum, as previously presented by the author (Penner. Can. J. Phys. 90, 315
(2012)), is used to generate a theoretical rotational curve for the Galaxy. The theoretical curve generated is found to be in good
agreement with Sofue's (Publ. Astron. Soc. Jpn. 64, (In press) (2012)) compilation of observations. For the baryonicmass distribution
and baryonic Tully–Fisher relationship that is used, the theoretical orbital velocity at the Sun's location is found to be
(235 ± 15) km s−1. The galactic rotational velocity is then found to slowly fall from this value as it asymptotically approaches
the value of (192 ± 15) km s−1.

PACS No.: 90.95.30.−k.

Résumé : Nous utilisons la théorie du vide polarisé à énergie induite développée par l'auteur (Penner. Can. J. Phys. 90, 315 (2012)),
afin de générer une courbe théorique de vitesse de rotation pour la galaxie. La courbe théorique ainsi générée est en bon accord
avec les observations compilées par Sofue (Publ. Astron. Soc. Jpn. 64, (In press) (2012)). Pour la distribution de masse baryonique et
la relation baryonique de Tully–Fisher utilisées, nous trouvons qu'à la localisation du Soleil, la vitesse orbitale théorique est de
(235 ± 15) km s−1. La vitesse galactique tombe alors lentement pour approcher la valeur asymptotique de (192 ± 15) km s−1. [Traduit
par la Rédaction]

1. Introduction
Rotational curves are a primary tool used in determining the

mass distribution of galaxies. Indeed, the fact that the determined
mass distributions do not match the stellar distributions is a ma-
jor reason for the dark matter hypothesis. Examples of galactic
rotational curves are provided by Sofue [1], Sofue et al. [2], and
Noodermeer et al. [3]. There are two general characteristics that
are found with these galactic rotational curves. First, the stellar
orbital velocities do not fall off with increasing distance, as ex-
pected. Instead, as onemoves further from the galactic center, the
rotational velocity curves typically flatten out and the rotational
velocity remains relatively constant. Second, there is a relation-
ship between this constant orbital velocity found at large dis-
tances and the total luminosity of galaxies. This is called the
Tully–Fisher [4] relationship. By taking into account the gas con-
tent of galaxies, it has been shown by McGaugh et al. [5] that this
relationship is fundamentally a relationship between v, the rota-
tional velocity of galaxies; and M, their total baryonic mass. This
baryonic Tully–Fisher relationship (BTFR) as given by McGaugh
and Wolf [6] is

M � AM�v
4 (1)

with A = (45 ± 10) km−4 s4.
The current theory of dark matter can handle the flattening out of

galactic rotationcurvesbyhaving thedarkmatterclusterwithadensity
thatvarieswithdistancefromthegalacticnucleusas r−2.However, such
a distribution does not fall out naturally from the theory. The BTFR is
evenmoredifficult toexplain,as it impliesastrongcorrelationbetween
baryonicmatter and darkmatter.

The flattening out of galactic rotation curves and the BTFR are
motivating factors behind alternatives to the dark matter theory.
As a prime example, modified Newtonian dynamics (MOND), as
proposed byMilgrom [7–9], postulates that the inertia of an object
varies with acceleration in such a manner so as to specifically
produce the BTFR. A review ofMOND and other alternatives to the
dark matter theory is provided by Mannheim [10].

In Penner [11, 12], the author proposed a new alternative to dark
matter, again inspired by the flattening out of galactic rotation
curves and the BTFR. In this theory, baryonic matter induces a
gravitational contribution from the vacuum. An overview of this
theory will be provided in Sect. 2.

The focus of this particular paper will be on applying the
author's theory as given in Penner [12] to the rotational curve of
the Galaxy. Unlike dark matter models, in the author's theory
there are no free parameters to adjust to provide the best fit to a
given rotational curve. The contribution of the vacuum to the
gravitational field is determined directly by the baryonic mass
distribution and the coefficient of the BTFR. The resulting theo-
retical rotational curve will then be compared with the grand
rotational curve for the Galaxy as provided by Sofue [13–15], who
compiled kinematical data from the literature. Sofue scaled the
different observations to a solar rotational velocity of 200 km s−1

and determined a running mean of the compiled data (Sofue [13])
leading to the result shown in Fig. 1. Included are the circular
velocities from Sloan Digital Sky Survey blue star analyses by Xue
et al. [16], and rotational velocities from VERA for stellar maser
sources (Honmaet al. [17], Oh et al. [18]). The scale value of 200 km s−1

used by Sofue for the solar rotational velocity is below the recom-
mended IAUvalueof 220kms−1. Indeed, it is far below the valueof (254
±16)kms−1obtainedbyReidetal. [19]. Their valuewas obtainedusing
the Very Long Baseline Array and the Japanese Very Long Baseline
Interferometry Exploration of Radio Astronomy project to mea-
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sure trigonometric parallaxes and propermotion ofmasers found
in star-forming regions across the Galaxy.

The outline of this paper is as follows. In Sect. 2, an overview of
the theory in Penner [12] will be presented. In Sect. 3, a theoretical
rotational curve of the Galaxy will be generated using a model of
the baryonic mass distribution of the Galaxy and the author's
theory. This theoretical rotational curve will then be compared
with the observed values as summarized in Fig. 1. In addition, the
effect that possible variations in the theory would have on the
theoretical rotational curve will be considered. This will be fol-
lowed by a conclusion and a discussion on issues related to the
theory of an induced energy polarized vacuum.

2. Theory

2.1. General consequences of an induced energy polarized
vacuum

Without reference to the specific nature of the entities, con-
sider the consequences of the vacuum consisting of entities that
in some manner become polarized with respect to energy in the
presence of a gravitational field. The induced energy dipole mo-
ment density, PE, would be given by

PE � npE (2)

where n is equal to the number of entities per unit volume and pE
is the induced energy dipole moment per entity. The resulting
energy density of the vacuum, �E, surrounding a given gravita-
tional field source is then given by

�E � ��·PE (3)

and by Gauss's law for gravitation the total gravitational field, g,
will be determined from

�·g � �
4�G

c2
(�M � �E) (4)

where �M is the energy density of the baryonic mass.
The resulting gravitational field contribution, gA, because of

this energy polarized vacuum will be given by

gA �
G

c2
�
V ′

�EdV
′

(r � r ′)3
(r � r ′) (5)

In the case of spherical symmetry or in the far field limit where
r ¡ ∞, (5), with the use of (3), simplifies to

gA �
4�G

c2
PE (6)

Consider first the case where the dependence of the induced
energy dipolemoment density on the total gravitational field, g, is
linear such that

PE � �
c2

4�G
g (7)

where � is a dimensionless constant. Then by (3), (4), and (7)

�E �
�

1 � �
�M (8)

and the resulting relationship between the total gravitational
field and gM, the gravitational field due to the baryonic mass, will
be given by

g �
1

1 � �
gM (9)

The consequences of a linearly induced energy polarized vacuum
will therefore be that the apparent mass of the baryonic source
will increase by a factor of 1/(1 − �) but the surrounding gravita-
tional field will still fall off as the inverse square of the distance.
The effects of an induced energy polarized vacuum in this case
would not be apparent.

Consider now the case where the relationship between the in-
duced energy dipolemoment density and the gravitational field is
nonlinear. In the far field limit, where g �� g0 with g0 being a
constant to be determined, this nonlinear relationship can, in
general, be expanded as

PE � �
c2

4�G
g0�� g

g0� � �� g

g0�
2

� ��� g

g0�
3��ĝ (10)

where � and � are dimensionless constants. In the far field, where
the gravitational field from the induced energy polarized vacuum
dominates, (i.e., for g/g0 �� 1, gA ¡ g), by (6) and (10) it follows that
� = 1. The far field gravitational field contribution of the induced
energy polarized vacuum will therefore be given by

gA � g0�� g

g0� � �� g

g0�
2

� ��� g

g0�
3�� (11)

Substituting g = gM + gA into (11) and keeping only terms up to
second order leads to the following far field relationship between
the total gravitational field and the gravitational field due to the
baryonic mass:

g2 �
gMg0

�
(12)

Fig. 1. A running mean of the data compiled by Sofue [13].
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The far field gravitational field in the case of a nonlinearly in-
duced energy polarized vacuumwill therefore in general fall off as
gM
1/2 or as 1/r. Such an effect would be very apparent. By the substi-

tutions g = v2/r and gM = GM/r2, (12) can also be expressed as the
following relationship between the total baryonic mass and the
far field orbital velocity:

M �
�

Gg0
v4 (13)

The baryonic Tully–Fisher relationship between the baryonic
mass of a galaxy and the galaxy's rotational velocity is therefore a
natural consequence of the relationship between the induced en-
ergy polarization of the vacuum and the gravitational field being
nonlinear. The details of the nonlinearity will determine the val-
ues of � and g0 in (13) but not this general result. Equating the
coefficients of (13) and (1) results in

g0

�
� (1.7 ± 0.4) × 10�10 m s�2 (14)

2.2. Model of the energy polarization of the vacuum
In Penner [12] a semiclassical model of how the vacuum be-

comes energy polarized in the presence of a gravitational field is
provided. A summary of this model is as follows where some of
the equations from Penner [12] have been reworked to maintain
consistency with Sect. 2.1.

It is hypothesized in Penner [12] that throughout the cosmos
entities of both net positive energy and net negative energy con-
tinually come into and out of existence with amaximum lifetime,
	, as given by the Heisenberg uncertainty principle;

	 �
h̄

2|E|
(15)

where E is the net energy of a given entity. During a given entity's
lifetime it will be attracted to a gravitational source if its energy is
positive and repelled from the source if its energy is negative.
Each entity will therefore have an equivalent energy dipole mo-
ment, pE, given by

pE � E	x
t (16)

where �x�t is the time-averaged displacement of the entity that is
due to the gravitational field. For both positive and negative en-
ergy entities pE will point in the direction of the gravitational
field. In Penner [12] the entities are modeled as coming into exis-
tence with zero velocity with respect to the gravitational field and
as such

	x
t �
1

3
xA (17)

where

xA �
1

2
gtE

2 (18)

with tE ≤ 	 being the lifetime of a given entity.
The equivalent energy dipole moment density will be given by

PE � N pEtE (19)

where N is the rate per unit volume at which entities (both posi-
tive and negative) come into existence, and the bar over pEtE rep-
resents an averaging over the entities. By (16)–(19) it then follows
that

PE �
1

3�2

g
NE xA

3/2ĝ (20)

If the entities do not interact with each other their lifetime, tE, is
taken to be equal to 	 and by (18) and (20)

PE � � 16NE	3�g (21)

and the relationship between the energy dipole moment density
and the gravitational field is linear. As discussed in Sect. 2.1, for a
linear relationship the effect of an induced energy polarized vac-
uum will not be apparent.

However, in the model presented by Penner [12] interactions
between the entities are explicitly considered. In the model if a
positive energy entity interacts with a negative energy entity both
entities cease to exist. In this case

xA
3/2 � �

0




xA
3/2 P(x)dx � 
3/2�




∞
P(x)dx (22)

where P(x) is the probability function for the distance travelled by
an entity before interacting with another entity and


 �
1

2
g	2 (23)

is the maximum distance an entity can travel. The probability
function will be given by the standard Beer–Lambert law;

P(x) � �e��x (24)

where �, the attenuation coefficient, is given by

� � �ni (25)

with � being the cross-sectional area for an interaction and ni is
the number density of the entities that can take part in an inter-
action. Evaluating (22) then leads to

xA
3/2 �

�


�

3

2
(
 � e�
�) (26)

where


 �
��

2

erf (�
�)

�
�

(27)

In Penner [12] it is shown that the attenuation coefficient can be
expressed as

� � 
�0 (28)

where
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�0 �
1

2
N�	 (29)

is the attenuation coefficient in the far field limit. From (20) and
(22)–(29) the induced energy density dipole moment is then given
by

PE �
NE	

3�0
�32�1 �

e�
(g/g0)


 ��ĝ (30)

where

g0 �
2

�0	
2

(31)

In the far field limit, where g/g0 �� 1, the expression in the brack-
ets of (30) approaches g/g0. In addition, in the case where in the far
field the gravitational field from the induced energy polarized
vacuum dominates, (i.e., for g/g0 �� 1, gA ¡ g), by (6) and (30) it
then follows that

NE	

3�0

�
c2

4�G
g0 (32)

Therefore by (30) and (32) the dependence of the induced energy
dipolemoment density on the gravitational field can be expressed
as

PE �
c2

4�G
g0�32�1 �

e�
(g/g0)


 ��ĝ (33)

where by (23), (31), and (27)–(29)


 �
��

2

erf [�
(g/g0) ]

�
(g/g0)
(34)

In the far field limit it is shown in Penner [12] that the expression
in the brackets of (33) can be expanded as

3

2�1 �
e�
(g/g0)


 � � � g

g0
� �

3

5� g

g0
�2 � ��� g

g0
�3� (35)

Therefore by (6), (33), and (35) the far field gravitational field due
to the energy polarized vacuum is

gA � g0�� g

g0� �
3

5� g

g0�
2

� ��� g

g0�
3�� (36)

Comparing (36) with (11) it can be seen that the value of � for this
model is 3/5 resulting in a value for g0, from (14), of1

g0 � (1.0 ± 0.2) × 10�10 m s�2 (37)

Figure 2 shows the energy dipolemoment density PE, as per (33),
as a function of the gravitational field g. As is seen in the figure for

a value of g0 = 1.0 × 10−10 m s−2 the value of pE approaches a
constant value of 1.6 × 1016 J m−2. Although variations of the mod-
eled entities behaviour are possible the saturation indicated by
Fig. 2 would be a common feature. For spherical symmetry the
value of gA will, by (6), also approach a constant value as the
gravitational field increases. The strong field value in this case is1

gA ¡ (1.5 ± 0.4) × 10�10 m s�2 (38)

3. Rotational curve of the Galaxy

3.1. Baryonic mass distribution and resulting gravitational
field

Flynn et al. [20] provide estimates of the stellar mass of the
Galaxy based on measurements of the volume luminosity density
and surface luminosity density generated by the local galactic
disk. The stellar mass determined is a function of the assumed
exponential disk scalelength, RD. The resulting stellar mass of the
Galaxy is 48.5–55 × 109 M

J
for 2 kpc ≤ RD ≤ 5.5 kpc. The total gas

mass is estimated at (9.5 ± 3) × 109 M
J
yielding a total baryonic

mass for the Galaxy of (61 ± 5) × 109 M
J
. The breakdown of the

contribution from the disc and the bulge is also dependent on the
scalelength. For an RD of 3 kpc the ratio of the stellar mass in
the disc to that of the bulge is found to equal 1.92. Using as an
approximation that the distribution of the gas follows that of the
stellar mass and using a value for RD = 3 kpc then leads to the
following baryonic mass distribution of the Galaxy:

MTOTAL � (61 ± 5) × 109 M� (39a)

MDISC � (40 ± 3) × 109 M� (39b)

MBULGE � (21 ± 2) × 109 M� (39c)

The gravitational potential in cylindrical coordinates for an ex-
ponential disc can be shown to be given by

1In Penner [12] an older estimate for A of 35 km−4 s4 (McGaugh et al. [5]) was used in equation (1) thereby leading to slightly different values.

Fig. 2. The theoretical relationship between the induced energy
dipole moment density, PE, and the gravitational field, g.
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�DISC (r, z) � �
2G

�

MDISC

RD
2 �

0

∞

xe�x/RDK (�4xr/q2)
q

dx (40a)

where

q � �z2 � (x � r)2 (40b)

and K is the complete elliptic integral of the first kind. For the
bulge component the following Hernquist model was used with
the scalelength RB = 0.4 kpc:

�BULGE (r) � �
GMBULGE

r � RB

(41)

The resulting baryonic gravitational fields are then determined
from

gDISC � � ��DISC (42)

and

gBULGE � � ��BULGE (43)

3.2. Theoretical rotational curve
Given the relationship between the induced energy dipole mo-

ment density, PE, and the gravitational field, g, as given by (33)
along with (3) and (5) the total gravitational field surrounding the
Galaxy can be determined. One complication is that (5) is a tran-
scendental equation as �E, through PE in (3), is a function of g,
which in turn is a function of gA. The method of solution is as
follows. The initial estimate of the gravitational potential and the
gravitational field surrounding the Galaxy is taken to be solely
that due to the baryonic mass. The value of PE and the resulting
energy density of the vacuum are then determined by (33) and (3).
From the energy density distribution the gravitational potential
due to the vacuum is then determined and for the next estimate
the total gravitational potential is taken to be equal to the sum of
the potentials due to the baryonic mass and the vacuum. This
iterative process is then repeated until the resulting values of the
gravitational field obtained after a given iteration vary by less
than 1% from the previous iteration.

From the resulting total gravitational field, g, as well as from
gDISC, gBULGE, and gA � (g2 � gDISC

2 � gBULGE
2 )1/2, the corresponding

contributions to the rotational velocity were determined, i.e.,
v = (rg)1/2. The result for g0 = 1.0 × 10−10 m s−2 and a baryonic mass
of 61 × 109 M

J
is shown in Fig. 3. The baryonic Tully–Fisher rota-

tional velocity, as determined from (1) and (39a), is (192 ± 15) km s−1.
As is seen in Fig. 3, this is the value that the rotational curve due
to the vacuum contribution asymptotically approaches. The over-
all rotational curve initially follows that of the bulge, has a slight
dip at 3 kpc followed by a broad maximum between 5 and 10 kpc,
which encompasses the position of the Sun. The details of these
features will be dependent on the scalelengths chosen for the disc
and bulge as well as their assigned baryonic masses. The theoret-
ical rotational velocity found at the location of the Sun (r = 8 kpc)
is (235 ± 15) km s−1, which is well within the range given by Reid
et al. [19]. The rotational velocity then slowly drops as it asymptot-
ically approaches the value of (192 ± 15) km s−1. The theoretical
rotational velocity will then remain at this value until other gal-
axies start having a significant influence on the overall gravita-
tional field.

The theoretical curve generated has systematically higher ve-
locity values than the experimental curve provided by Sofue (i.e.,
Figure 1). However, as stated in the introduction, Sofue scaled the
observations so that the rotational velocity of the Sun is 200 km s−1. To
better compare the theoretical rotational curve with the compila-
tion of results provided by Sofue [13], Sofue's values will therefore
be scaled up by 35 km s−1 so that both the experimental and
theoretical solar rotational velocities are equal to 235 km s−1. The
result is shown on Fig. 4. Overall for r < 20 kpc the agreement is
quite good. The theoretical baryonic mass distribution that was
used ignored features, such as the spiral arms, so the details
within 10 kpc should not be taken as significant. Beyond 20 kpc
the agreement is still good, especially considering the large un-
certainties in Sofue's values. Sofue also provided values beyond
100 kpc, however, at those distances the effects of the neighbour-
ing galaxies would be significant.

3.3. Dependence on variations in the model
Themodel of how the vacuum becomes energy polarized in the

presence of a gravitational field presented by the author [12] and
in Sect. 2.2 involves several simplifications. To determine how
sensitive the generated rotation curve is to possible variations in
the model, rotation curves were generated for two other induced
energy dipole moment density functions. These functions are as
follows:

PE �
c2

4�G
g0

∗[1 � e�(g/g0∗)] (44)

and

PE �
c2

4�G
g0

∗ ln �1 �
g

g0
∗� (45)

For g/g* �� 1, both these functions can be expanded as a series, and
for both, � = 1/2, resulting in g0*, from (14), being equal to 0.84 ×
10−10m s−2. These two functions are plotted in Fig. 5 alongwith the
theoretical induced energy dipole moment density function as

Fig. 3. The contribution of the bulge (o), the disc (�) and the
polarized vacuum (□) to the net rotational curve (·) of the galaxy.
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given by (33). The theoretical rotational curves generated by all
three functions are shown in Fig. 6. As seen in Fig. 5, although the
functions of PE as given by (44) and (45) vary significantly from the
theoretical function, the effects on the rotational curves as seen in
Fig. 6 are only secondary. The reason being that the differences
between the functions are greatest where the gravitational field is
the strongest. As indicated on Fig. 5 this corresponds to r � 5 kpc.
This, however, corresponds to the region where the relative con-
tribution to the gravitational field provided by the induced energy
polarized vacuum is less than that provided by the baryonic mass.
Hence variations in themodeled behavior of the entities will have
limited impact on generated rotational curves. The solar velocity
found for the functions given by (44) and (45) are 223 and 242 km s−1,
respectively. If the rotational velocity of the Sun could be deter-
mined more precisely it would then be possible to distinguish
between different possible models for the induced energy polar-
ization of the vacuum.

4. Conclusion
The theory of an induced energy polarized vacuum as previ-

ously presented by the author [12] has been used to generate a
rotational curve for the Galaxy. This is found to be in good agree-
ment with Sofue's compilation of results. For the given baryonic
mass distribution model and BTFR coefficient the theoretical or-
bital velocity at the Sun's location was found to be (235 ±
15) km s−1. The Galactic rotational velocity is then found to slowly
fall from this value as it asymptotically approaches the value of
(192 ± 15) km s−1.

Fig. 4. The theoretical rotational curve (·) compared with Sofue's
compiled data (x). Uncertainties in Sofue's results are shown for
r > 40 kpc.

Fig. 5. The induced energy dipole moment density as given by (44)
(lower curve), (45) (upper curve) and the theoretical relationship as
given by (33) (middle curve).

Fig. 6. The generated rotational curves as derived using the induced
energy dipole moment density as given by (44) (lower curve), (45)
(upper curve) and the theoretical relationship as given by (33)
(middle curve).
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The Milky Way Galaxy's rotational curve was chosen as the first
application of the author's theory of an induced energy polarized
vacuum for the primary reason that it is our galaxy. Future work
will consider in more general terms the nature of galactic rota-
tional curves that are generated by the theory.

5. Discussion
For the given model of the induced energy polarized vacuum

some of the details of the entities can be determined. Expressing
the interaction cross section, �, as equal to �r02, where r0 is the
range of the interaction, the following inequality would be ex-
pected to hold:

N	 � �43� r0
3��1

(46)

where N	 is the maximum entity density (i.e., the number density
of entities in the far field or zero gravitational field limit). Equa-
tion (46) basically states that the average separation of the entities
is greater than their interaction range. Equations (46), (15), (29),
(31), and (32) along with the value of g0 as given by (37) then lead to
the following inequalities1:

r0 � 2.9 × 10�23 m (47a)

� � 2.6 × 10�45 m2 (47b)

|E| � 4.2 × 10�29 J and (47c)

	 � 1.2 × 10�6 s (47d)

From (47b) and (47c) it is seen that the entities would appear to be
weakly interacting particles of very small energy.

To facilitate an understanding of the theory of an energy polar-
ized vacuum a numerical example where the interaction range,
r0, is equal to 1 × 10−23 m, in agreement with (47a), will be consid-
ered. Given this value of r0 it follows from (15), (29), (31), (32), and
(37) that

� � 3.1 × 10�46 m2 (48a)

|E| � 5.1 × 10�30 J (48b)

	 � 1.0 × 10�4 s and (48c)

N � 1.1 × 1071 m�3s�1 (48d)

The resulting energy densities of the positive and negative energy
entities in the zero gravitational or far field limit for this example
are then given by

�� � |��| �
1

2
NE	 (49a)

�� � 3.0 × 1028 J m�3 (49b)

The magnitudes of the energy densities for the positive and neg-
ative entities are certainly very large. Of course in the absence of
a gravitational field the two energy densities will cancel each
other and the net energy density, �E, of the vacuum will equal
zero. In a gravitational field this is no longer the case as the
entities will shift and interact as per the model outlined in Sect.
2.2; �+ will no longer be equal in magnitude to �− and the net
energy density of the vacuum, �E = �+ + �−, will no longer equal
zero but will equal the value given by (3). For example, at the

position of the Sun, (r = 8 kpc), �E is determined by themodel to be
equal to 2.2 × 10−4 J m−3. Comparing this value to (49b) it is seen
that the relative change in the energy densities of the entities
in the presence of a gravitational field is extremely small. How-
ever, the resulting contribution that �E makes to the gravitational
field of a galaxy is very large and is responsible for the observed
galactic rotational curves as well as the BTFR. Although the value
of r0 used and the resulting values given by (48a)–(48d) is just to be
taken as an example, the general conclusions would be expected
to hold.

With regards to the author's induced energy polarized vacuum
theory there are several issues that have been raised by reviewers.
First, as the theory leads naturally to the BTFR, the exponent in
the relationship between the baryonic mass and the asymptotic
rotation velocity, as given by (1), has to be exactly 4. The BTFR is
found to be in good agreement with observations of galaxies with
masses ranging over approximately seven orders of magnitude
(i.e., from approximately 1012 M

J
down to 105 M

J
). However, sig-

nificant deviations from the BTFR have been observed with the
faintest Local Group dwarf galaxies, which have masses <105 M

J
.

McGaugh and Wolf [6] present several possible explanations for
these deviations. Of particular interest is the correlation between
the extent of the deviation from the BTFR and the dwarfs' suscep-
tibility to tidal influences from their host galaxy. In the theory of
an induced energy polarized vacuum there would be expected to
be an even greater effect. Those dwarfs that are the most suscep-
tible to tidal effects will also be those dwarfs that have their
surrounding vacuum energy density distribution most distorted
by the host galaxy. Dwarf galaxies orbiting a host galaxy cannot be
treated as isolated systems in the author's theory and the BTFR
would not be expected to apply to them.

A second issue relates to the saturation value as given by (38).
Within the solar system the gravitational field due to the Sun is
many orders of magnitude greater than the fields involved in the
generation of the Galaxy's rotation curve. As such, if the author's
model is extended to the solar system, the value of gA is found to
be at the saturated value of (1.5 ± 0.4) × 10−10 m s−2. This is tanta-
lizingly close to the value of the Pioneer anomaly [21–23], which is
given by

aPIONEER � (8.74 ± 1.33) × 10�10 m s�2 (50)

In Penner [12], the author attempted to explain the difference be-
tween the lower theoretical value and the higher observed value,
as given by (50), by postulating that the positive and negative
energy entities have more than one energy magnitude. An exam-
ple is presented in Penner [12] where entities of two different
energy levels can lead to the higher value. However, given the
recent results of Turyshev et al. [24] the necessity to explain the
lower theoretical value no longer exists. By modeling the emis-
sion of thermal radiation off of the Pioneer vehicles, Turyshev
et al. found that the bulk of the anomalous acceleration can be
explained. Using their Fig. 3, the anomalous acceleration over the
distance of 20 to 70 AU is estimated at (1.4 ± 1.9) ×10−10 m s−2, with
the given uncertainty being solely due to the modeling of the
thermal term. Turyshev et al. conclude “that at the present level of
our knowledge of the Pioneer 10 spacecraft and its trajectory, no
statistically significant acceleration anomaly exists.” Although
the simplest possibility is that the anomalous acceleration is zero,
the value of (1.5 ± 0.4) ×10−10 m s−2 derived from the induced
energy polarized vacuum theory is actually in very good agree-
ment with these results. The uncertainties are just too large to
draw any conclusions.

An issue with Turyshev et al.'s result is that their thermal in-
duced acceleration value increased when the spacecraft was
closer to the Sun early in its trajectory. The anomalous Pioneer
acceleration has a very distinct onset between 10 and 20 AU, and
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while the spacecraft was in the inner solar system no anomalous
acceleration was measured. Turyshev et al. suggest that this dis-
crepancy, within the inner solar system, between their results and
the Pioneer results may be due to a mismodeling of the solar
thermal contribution, but this significant discrepancy does raise
questions.

Turyshevetal.'s resultsaside, thediscrepancybetweenthetheoretical
value of (1.5 ± 0.4) ×10−10 m s−2 and the absence of any such observed
value, at least within the inner solar system (≤20 AU), needs to be ad-
dressed. In Penner [12] it was hypothesized that given that the solar
magnetic field density increases rapidly as the Sun is approached,
an electromagnetic field may in some manner inhibit the exis-
tence or lifetime of the proposed entities in the model. However,
it is suspected that it is more likely that the semiclassical model of
the behavior of the entities presented in Penner [12] is too simplis-
tic and that the model as given breaks down in the stronger grav-
itational fields of the solar system. An improved model will have
to wait though, for at the present time the focus of the author is to
demonstrate that the theory of an induced energy polarized vac-
uum will explain observations that relate to the behavior of gal-
axies. In this regime the fields are weak enough so that the
current modeled behavior of the entities is adequate.
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